Moore-Penrose inverse of conditional type operators
نویسندگان
چکیده
منابع مشابه
Minors of the Moore - Penrose Inverse ∗
Let Qk,n = {α = (α1, · · · , αk) : 1 ≤ α1 < · · · < αk ≤ n} denote the strictly increasing sequences of k elements from 1, . . . , n. For α, β ∈ Qk,n we denote by A[α, β] the submatrix of A with rows indexed by α, columns by β. The submatrix obtained by deleting the α-rows and β-columns is denoted by A[α′, β′]. For nonsingular A ∈ IRn×n, the Jacobi identity relates the minors of the inverse A−1...
متن کاملAn Efficient Schulz-type Method to Compute the Moore-Penrose Inverse
A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.
متن کاملFast Computation of Moore-Penrose Inverse Matrices
Many neural learning algorithms require to solve large least square systems in order to obtain synaptic weights. Moore-Penrose inverse matrices allow for solving such systems, even with rank deficiency, and they provide minimum-norm vectors of synaptic weights, which contribute to the regularization of the input-output mapping. It is thus of interest to develop fast and accurate algorithms for ...
متن کاملWhen Does the Moore–penrose Inverse Flip?
In this paper, we give necessary and sufficient conditions for the matrix [ a 0 b d ] , over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the MoorePenrose inverse of the matrix flips. Mathematics subject classification (2010): 15A09, 16E50, 16W10.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2017
ISSN: 1846-3886
DOI: 10.7153/oam-11-19